Enhanced LSST weak lensing via combination with external spectroscopic datasets

Rachel Mandelbaum 5/23/2016

Outline

- Background
 - Weak lensing science
 - The case for cross-correlations
- Cross-correlation with spectroscopic datasets
- Cross-correlation with the CMB

Gravitational lensing

Deflection of light by all gravitational mass, including dark matter!

Strong: multiple images

Gravitational lensing

Deflection of light by all gravitational mass, including dark matter!

Gravitational lensing

Strong: multiple images

Deflection of light by all gravitational mass, including dark matter!

Weak: slight shape distortion and magnification

Weak lensing

Weak lensing

Coherent shape-shape (shear-shear) alignments

OR

Coherent foreground position-background shape alignments

Why should you care about weak lensing?

Structure growth!

Theory of gravity!

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8\pi G T_{\mu\nu}$$

Dark matter and dark energy!

Galaxy-dark matter connection!

Weak lensing in the era of LSST

Starting in 2003: shear-shear (cosmic shear) got lots of attention

Image credit: LSST science book

Why do we want that other stuff?

It's all about the systematics

Example (schematically)

- shear-shear
- 2. OTHER-shear
- 3. OTHER-OTHER

If a systematic is in shear,
but not OTHER ⇒
use the combination to
marginalize over the
systematic

Example (schematically)

- shear-shear
- 2. OTHER-shear
- 3. OTHER-OTHER

If a systematic is in shear,
but not OTHER ⇒
use the combination to
marginalize over the
systematic

- Systematics: theoretical or observational
- OTHER: galaxy position is a popular one

Spectroscopic cross-correlations

Photometric redshifts

- Interpreting weak lensing shears as a function of cosmological parameters requires a knowledge of distances
- Use of spectroscopic cross-correlations to calibrate photometric redshift distributions: see Jeff Newman's talk

Intrinsic alignments

Coherent shape alignments due to effects rather than lensing

(intrinsic shear - intrinsic shear)

Intrinsic alignments

Coherent shape alignments due to effects rather than lensing

Correlate these: "Gl" term (lensing shear vs. intrinsic shear)

Effect on lensing measurements

- Can give huge biases on cosmological parameter estimates if ignored!
 - See, e.g., Krause+15
- → Need to marginalize over intrinsic alignments
 - shear-shear
 - Galaxy position (2d)-shear
 - Galaxy position (2d)-galaxy position (2d)

How do we get models?

- Analytic models, N-body or hydrodynamic simulations provide models
- Direct measurements of intrinsic alignments provide priors
 - Ideally use spec-z to reduce degeneracies with redshift errors
 - Can use either a representative spec-z dataset, or an un-representative one in cross-correlation

Cross-correlation method

- Blazek et al (2012), Chisari et al (2014)
- Compare shear from associated and background galaxy
- Allows non-parametric IA constraints using spec-z tracers of the density field

A cosmic shear alternative / consistency check?

Connection to the matter field

- shear-shear — Matter-matter correlations
- Galaxy-shear → Galaxy-matter
- Galaxy-galaxy

$$\frac{(\overline{\rho}\,\xi_{\rm gm})^2}{\xi_{\rm gg}} = (\overline{\rho}\,r_{\rm cc}^{(\xi)})^2 \xi_{\rm mm}$$

Cross-correlation
coefficient between
galaxies, matter:
generically goes to I on
large scales

Why?

- We often know lens redshifts quite well for massive objects (lots of cosmological info)
- Use of real-space separation (not angle)
 makes it easier to marginalize over small
 scales that we cannot easily model
- Some shear systematics vanish in crosscorrelation, not auto-correlation
- Intrinsic alignments only enter due to photo-z error

Proof of concept

- RM+13 demonstrated method in SDSS (too shallow for cosmic shear)
- Constraints on dark energy were competitive with cosmic shear in other datasets
- Updated analysis in preparation...

CMB cross-correlations

What crosscorrelations are useful?

- Galaxy position galaxy position \longrightarrow Galaxy bias
- Galaxy position lensing of galaxies
- Galaxy position lensing of CMB
- (and more)

Proof of concept in SDSS

See Jia Liu's talk later today for CFHTLenS example

Singh & Mandelbaum (in prep)

Also: cosmography

Distance to CMB

Distance to galaxies

See also
Miyatake
et al. paper
from last week

Singh & Mandelbaum (in prep)

Expect rapid progress in this area

- Initial CMB lensing detections and crosscorrelation with galaxy lensing shear – not too long ago!
- Should be a high-interest area in the next few years
- Watch CMB-S4 plans...

Conclusions

Approach to lensing in the era of LSST:

Cross-correlate everything.